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Abstract. Polynomial approximations constructed using a least-squares approach form a ubiquitous
technique in numerical computation. One of the simplest ways to generate data for least-
squares problems is with random sampling of a function. We discuss theory and algorithms
for stability of the least-squares problem using random samples. The main lesson from our
discussion is that the intuitively straightforward (``standard"") density for sampling fre-
quently yields suboptimal approximations, whereas sampling from a non-standard density,
called the induced distribution, yields near-optimal approximations. We present a recent
theory that demonstrates why sampling from the induced distribution is optimal and pro-
vide several numerical experiments that support the theory. Software is also provided that
reproduces the figures in this paper.
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1. Introduction. Many applications require the construction of approximations
to a given function f . When f is complicated or expensive to evaluate, one typically
transforms evaluations of f on a grid into an approximation g. A simple example of
this procedure is univariate polynomial interpolation, where f is sampled at M dis-
tinct points and g is subsequently built as a degree-(M  - 1) polynomial that uniquely
interpolates the data from f . Other examples of approximation procedures are com-
mon as well; here we will focus on one of the simplest approximation techniques:
polynomial approximation via discrete least squares. In particular, we will focus on
the case when the abscissae on which f is evaluated are randomly drawn, which has
advantages in both theory and practice.
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484 LING GUO, AKIL NARAYAN, AND TAO ZHOU

While the construction of approximations in one dimension is well studied and
understood (see, e.g., [55]), the task of building such an approximation when f is
a multivariate function is substantially harder. Such problems arise, for example,
in parametric uncertainty quantification problems, where analyzing dependence of a
mathematical model on random input parameters is transformed into a problem of
forming a polynomial approximation in a high-dimensional space [57, 47, 40, 32, 19,
53, 60, 31].

Many methodologies for performing function approximation in high-dimensional
spaces utilize quadrature rules or interpolation grids, but construction of such grids is
a difficult problem in high dimensions, and many standard constructions yield a grid
size so large that one cannot afford many evaluations of f . It is in such situations when
discrete least-squares procedures, particularly those where samples are unstructured
and randomly chosen, can be beneficial. This is the main point that we wish to
drive home in this paper. In particular, our focus is on the demonstration of the
theory and practice of least-squares construction of polynomial approximations using
random samples in multiple dimensions. There is a plethora of literature that studies
least-squares statistical regression estimation procedures (especially in the noisy data
case), which we briefly discuss.

1.1. Comparison to Statistical Regression. The statistical community has long
developed regression tools for generating parametric models that furnish relationships
between variables. These tools are not the focus of this paper, but it is appropriate for
us to briefly describe the similarities and differences between the approach of this pa-
per and that of regression analysis. We refer the reader to [20, 36, 28] for more proper,
complete descriptions of regression techniques. We also note that topics such as learn-
ing theory [3, 4] and optimal experimental design [21, 34, 9] consider similar problems.

Many regression techniques aim to fit observational data to prescribed models,
and determining model parameters via ordinary least squares is one standard com-
putational approach. When the noise in the observed data is independent but not
stationary (heteroscedasticity), then weights can be introduced in the least-squares
objective to ``whiten"" the impact of each sample on the objective function. Once a
model is built, regression is often concerned with topics such as understanding biasing
properties of the model parameters, determining variable influence, and understand-
ing asymptotic convergence properties of the estimator.

The computational approach we take in this paper is weighted least squares and
hence is quite similar to a weighted least-squares regression procedure. However, in
contrast to the viewpoint above, we are interested in building an approximation to
a true underlying function. In this sense, in general we expect convergence of the
model to some ``best"" model and not to the actual underlying function as the number
of samples is increased. The data we generate is not noisy, and hence a statistical
interpretation of the data may not be appropriate. Finally, one can mathematically
define a ``best"" model, but a model built from finite data may not match the best one.
We are primarily interested in understanding when and how we can obtain a model
that is close to the best one.1

1.2. Scope of This Paper. In statistical parlance our main computational objec-
tive is as follows: Given observational data, we seek to build a model whose parameters
are chosen via least-squares regression. The goal of this paper is similar in philoso-
phy to statistical regression, but we reword the previous statement in mathematical

1We make this more precise and explicit in section 5.1.
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CONSTRUCTING LEAST-SQUARES POLYNOMIAL APPROXIMATIONS 485

language, whose connotations more accurately reflect the context: Given function
samples, we seek to build a mathematical model from a prescribed vector space, and
the expansion coefficients of this model are determined by a weighted least-squares
method.

In this sense, we assume that the underlying function f is a member of a larger
(infinite-dimensional) vector space, but that the model is finite-dimensional. (For ex-
ample, a general analytic function can be approximated by a finite-degree polynomial
model.) In this situation the function samples are indeed observational data, but are
not noisy so that this is not the setup of standard statistical regression theory. Thus,
large-data asymptotics of statistical regression are not the appropriate viewpoint. In-
stead, one expects in the large-sample limit that the approximation g converges to
a function that is the projection of f onto the finite-dimensional model space. This
projection is the ``best"" model mentioned at the end of section 1.1. A natural desire
then is to understand how much data is required so that the predicted model is close
to this projection.

The perspective above is the main focus of this paper. The approaches we discuss
are more common in the computational mathematics discipline, in particular in the
numerical analysis community. We consider the case when the function f from which
data is gathered is deterministic, but the particular abscissa at which f is evaluated
to generate data is random. We compute coefficients of an approximation via least
squares on the function samples. Thus, randomness enters via the sampling process
but does not correspond to noise or error in the data values.

When constructing least-squares approximations with randomly generated sam-
ples, the large-sample limit should yield an approximation that matches the best
model to a function. Of course, in practice one wishes to reach this limiting case with
as few samples as possible. Recent work in the literature has shown that sampling
from ``standard"" densities requires a relatively large number of samples, whereas us-
ing samples from so-called induced distributions yields stable least-squares problems
with a near-optimal (minimal) number of samples. The main goal of this paper is
to illustrate the theory of such results and to demonstrate through numerical experi-
ments that sampling from induced distributions can substantially improve the quality
of approximation in least-squares problems.

The theory which gives rise to this paper was first developed in [14, 16, 45],
and algorithms for sampling from nonstandard multivariate distributions that we
employ are available in [42, 41]. In particular, MATLAB code that reproduces Fig-
ures 1--6 in this paper is available from [43]. A brief outline of this paper is as
follows:

\bullet Section 2: Formal statement of the problem
\bullet Section 3: Approximations in one dimension with (deterministic) quadrature
rules

\bullet Section 4: Notation for the multivariate problem
\bullet Section 5: Discussion of weighted least squares with finite data, and asymp-
totic convergence properties

\bullet Section 6: Preasymptotic stability analysis for the least-squares procedure
\bullet Section 7: Presentation of optimal (induced) sampling distributions
\bullet Section 8: Discussion of induced distribution behavior for large polynomial
degree

\bullet Section 9: Demonstration of procedures on prediction for a parametric partial
differential equation
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486 LING GUO, AKIL NARAYAN, AND TAO ZHOU

\bullet Sections 10 and 11: Conclusion and discussion of existing generalizations and
new directions for research

2. Problem Statement. For D \subset Rd a domain, let w : D \rightarrow [0,\infty ) be a weight
function, and consider the following space of w-weighted square-integrable real-valued
functions over D:

L2
w = L2

w (D) =

\biggl\{ 
u : D \rightarrow R

\bigm| \bigm| \int 
D

u2(x)w(x)dx < \infty 
\biggr\} 
.

The space L2
w is a Hilbert space with an inner product and norm defined, respectively,

as

\langle u, v\rangle :=
\int 
D

u(x)v(x)w(x)dx, \| u\| 2 := \langle u, v\rangle .

To simplify some notation later, we will assume that w is a probability density func-
tion, i.e., that \| 1\| = 1. This is not a particularly strong assumption since it is
essentially equivalent to requiring that constant functions are in L2

w. The following
examples illustrate common choices for w and D.

Example 2.1 (approximations on hypercubes). Let the dimension d \geq 1 be fixed,
and consider the hypercube D = [ - 1, 1]d with weight function w(x) = 2 - d for x \in D,
and w(x) = 0 otherwise.

Example 2.2 (approximations on Rd). Let the dimension d \geq 1 be fixed, and
consider the region D = R

d with weight function w(x) = (2\pi ) - d exp( - \| x\| 22) for

x \in D, where \| x\| 22 =
\sum d

j=1 x
2
j .

Given some f \in L2
w, we are interested in building approximations to f . Specifi-

cally, we are interested in building polynomial approximations to f . For computational
purposes, we can only construct approximations from a finite-dimensional subspace
of L2

w. Let V be this subspace, having dimension N . Assume that v1, v2, . . . , vN is
an L2

w-orthonormal basis for V , i.e., that

\langle vj , vk\rangle = \delta j,k, 1 \leq j, k \leq N,(2.1)

where \delta j,k is the Kronecker delta function. The best possible approximation to a given
f \in L2

w is the orthogonal projection onto V given by

fN (x) :=
N\sum 

n=1

\widehat fnvn(x), \widehat fn := \langle f, vn\rangle .(2.2)

As stated, fN is the function from V that is closest to f as measured in the L2
w norm:

fN = argmin
v\in V

\| f  - v\| .(2.3)

Our main goal in this paper is to discuss a computational strategy for computing an
approximation to fN using least-squares approximation with random samples.

3. Approximation with Polynomials and a One-Dimensional Example. We
specialize the content of the previous section in two ways. First, we now consider ap-
proximation with polynomials, and second, we will consider an explicit example with
univariate approximation. Our main discussion will revolve around the approximation
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of fN defined in (2.2). The main message of this section is that for one-dimensional
cases there are constructive, deterministic ways to approximate fN , but that these pro-
cedures suffer from computational bottlenecks for multivariate approximation, which
motivates a later study of least squares.

Our univariate assumption implies that D \subset R. Consider the case where V is
a polynomial subspace of finite dimension; in particular, we will take the space of
polynomials of degree N  - 1 and lower for some fixed N \in N:

V := span
\bigl\{ 
1, x, . . . , xN - 1

\bigr\} 
.(3.1)

In order to fit our discussion into that of section 2, we need to assume (a) that V is a
subspace of L2

w, and (b) that there exists an L2
w-orthonormal basis \{ vn\} Nn=1 for V . The

first assumption can be guaranteed if all nontrivial polynomials from V have finite,
nonvanishing L2

w norm, and under this condition the second assumption is satisfied by
prescribing the functions vn as members of classical orthogonal polynomial families.

Example 3.1. Let w(x) be a weight function on D \subset R, and let the subspace V
be as in (3.1).

\bullet Let w(x) = 1/2 for x \in D = [ - 1, 1] and let it vanish outside this interval.
Then any nontrivial polynomial p satisfies 0 < \| p\| < \infty . For any N defining
V , we can take vn as the degree-n (normalized) Legendre polynomial. Such a
basis of V is L2

w-orthonormal.
\bullet Let w(x) = exp( - x2)/

\surd 
\pi for x \in D = R. Then, again, any nontrivial

polynomial p satisfies 0 < \| p\| < \infty . For any N defining V , we can take
vn as the degree-n (normalized) Hermite polynomial. Such a basis of V is
L2
w-orthonormal.

\bullet Let w(x) = 1/(\pi (1+x2)) for x \in D = R. Then V \not \subset L2
w for any N \geq 2 since

the L2
w norm \| xq\| is not finite for any q \geq 1.

The last example illustrates that while our setup of polynomial approximation is gen-
eral, it does not cover all cases that one might consider.

Ideally we would like to compute fN defined in (2.2); unfortunately the inner

products (integrals) defining the coefficients \widehat fn are usually not exactly computable so
that we must resort to approximations. A simple but effective approach to computing
such integrals is by use of an M -point quadrature rule,

\widehat fn =

\int 
D

f(x)vn(x)w(x)dx \approx 
M\sum 

m=1

f(xm)vn(xm)\lambda m =: cn.(3.2)

Here, (xm, \lambda m)Mm=1 are quadrature nodes and weights, respectively. Once the coeffi-
cients cn are computed, we form a new approximation gN defined as

gN (x) :=
N\sum 

n=1

cnvn(x) \in V.(3.3)

Computing expansion coefficients via quadrature, as in (3.2), is an effective technique
in one dimension where optimal quadrature rules are well studied. For example, a
classical univariate quadrature rule is the w-Gaussian quadrature rule, which is an
M -point rule (xm, \lambda m)Mm=1 that integrates all polynomials up to degree 2M - 1 exactly:\int 

D

p(x)w(x)dx =
M\sum 

m=1

p(xm)\lambda m \forall polynomials p such that deg p \leq 2M  - 1.
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488 LING GUO, AKIL NARAYAN, AND TAO ZHOU

The generation of this rule (i.e., of the abscissae xm and weights \lambda m) can be accom-
plished via relatively simple numerical linear algebraic procedures involving recurrence
coefficients for orthogonal polynomials. A modern reference detailing the theory and
algorithms for Gaussian quadrature is [22, Chapter 1], though many other earlier texts
discuss Gaussian quadrature as well.

Gaussian quadrature rules are a cornerstone of numerical analysis. A Gaussian
rule is the unique quadrature rule of optimal accuracy in the sense that no other M -
point quadrature rule achieves exactness over the same space of polynomials. Since
this rule has optimal accuracy, it is an excellent candidate for performing the ap-
proximation (3.2). Before illustrating this with an example, we first define a metric
that we will use to evaluate the accuracy of the approximation gN . Since fN is the
L2
w-orthogonal projection onto V , then f  - fN is orthogonal to any function in V ; in

particular,

\langle f  - fN , gN  - fN \rangle = 0, gN  - fN \in V.

Thus, by the Pythagorean theorem,

\| f  - gN\| 2 = \| f  - fN\| 2 + \| fN  - gN\| 2 .

Dividing both sides by \| f  - fN\| 2, we see that the error that gN commits in ap-
proximating f relative to its best approximation fN can be characterized by the
nonnegative number

\eta N :=
\| gN  - fN\| 
\| f  - fN\| 

,(3.4)

so that

\| f  - gN\| 2 = (1 + \eta 2N )\| f  - fN\| 2.

We assume throughout this paper that \| f  - fN\| > 0; if this were not true, then
f would be exactly a function from V , which is rarely the case in practice. Values
of \eta N that are approximately 1 imply that the construction of gN is well behaved:
the error committed by the act of constructing an approximation gN from V to f
is comparable to the error committed by the best approximation fN . Values of \eta N
that are much larger than 1 indicate that the construction of gN is ill behaved. With
all the pieces in place, we can now investigate the accuracy of gN constructed using
Gaussian quadrature.

Example 3.2. Consider the d = 1 case of Example 2.1, i.e., approximation on
the interval D = [ - 1, 1] with the uniform weight function w(x) = 1/2 for x \in D. With
V the degree-(N  - 1) polynomial space in (3.1), we take orthonormal basis elements
vn to be degree-(n - 1) normalized Legendre polynomials. We consider approximating
a scaled and shifted ``bump"" function f(x) defined by

f(x) := B (1.5x - 0.2) , B(x) :=

\Biggl\{ 
exp

\Bigl( 
 - 1

1 - x2

\Bigr) 
, | x| < 1,

0, | x| \geq 1.
(3.5)

The bump function B is a standard example of a function that is infinitely differ-
entiable, but not analytic. For each N , we can compute approximations cn to the
coefficients \widehat fn using an N -point Gaussian quadrature rule as in (3.2). (Hence, we
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Error: gN computed with N-point Gaussian quadrature

‖f − gN‖
‖f − fN‖

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

M = N

ηN

Relative Error

Fig. 1 Approximation of the one-dimensional bump function f in (3.5) with polynomials using
Gauss quadrature. Left: Original function and approximations gN defined in (3.3) and (3.2)

using an N-point Gauss quadrature rule to compute \widetilde fN . Center: L2
w errors for gN and

the best approximation fN defined in (2.2). Right: Relative error metric \eta N defined in
(3.4). Values \eta N \lesssim 1 indicate that the Gaussian quadrature strategy commits an error that
is comparable to the best truncation error and thus that gN is a near-best approximation.

take M = N here.) The left-hand pane of Figure 1 illustrates the function f along
with the approximants gN for a few values of N . The error of gN as a function of N
is shown in the center pane of Figure 1. Also shown is the best approximation error
\| f - fN\| . We see the hallmark of approximation of a smooth function by polynomials:
high-order convergence with respect to the degree of approximation N .

Finally, the right-hand pane in Figure 1 shows the relative error metric \eta N defined
in (3.4). That this metric is \scrO (1) for all N shown indicates that \| fN  - gN\| , which is
the discrepancy between the computed approximation gN and the best approximation
fN , is of the same order of magnitude as the best approximation error \| f  - fN\| , and
therefore gN is a near-best approximation.

Note in the previous example that in order to construct gN , we needed to specifyN
degrees of freedom (the coefficients cn). We computed these using M = N evaluations
of f via a Gaussian quadrature rule. The situation is far more complicated in multiple
dimensions.

4. Multivariate Notation. We now wish to address the more difficult problem of
computing multivariate polynomial approximations. To accomplish this we need to
introduce multi-index notation. Let \lambda \in Nd

0 = \{ 0, 1, . . .\} d denote a multi-index. For
x \in Rd and \lambda \in Nd

0, we define x\lambda in the standard way:

x =
\Bigl( 
x(1), x(2), . . . , x(d)

\Bigr) 
, \lambda =

\Bigl( 
\lambda (1), \lambda (2), . . . , \lambda (d)

\Bigr) 
, x\lambda :=

d\prod 
j=1

\Bigl[ 
x(j)

\Bigr] \lambda (j)

.

We also define \ell p norms of multi-indices in the standard way:

\| \lambda \| \infty := max
j

\lambda (j), \| \lambda \| pp :=
d\sum 

j=1

\Bigl[ 
\lambda (j)

\Bigr] p
, 0 < p < \infty .

An appropriate way to define polynomial spaces in several dimensions is to first iden-
tify a set of multi-indices and to subsequently define a polynomial space as the span
of the corresponding monomials,

\Lambda = \{ \lambda 1, . . . , \lambda N\} \subset Nd
0, V (\Lambda ) := span

\bigl\{ 
x\lambda 

\bigm| \bigm| \lambda \in \Lambda 
\bigr\} 
.(4.1)
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490 LING GUO, AKIL NARAYAN, AND TAO ZHOU

The subspace V (\Lambda ) has dimension N . In one dimension, if N is fixed and given,
the choice of \Lambda is fairly straightforward (equaling \{ 0, 1, . . . , N  - 1\} ), but in multiple
dimensions there are multiple ``reasonable"" choices for \Lambda . For example, given k \geq 0,
there are \ell p-balls in Nd

0,

\Lambda p(k) :=
\Bigl\{ 
\lambda \in Nd

0

\bigm| \bigm| \| \lambda \| p \leq k
\Bigr\} 
, 0 < p \leq \infty ,

or the hyperbolic cross (HC) spaces

\Lambda HC(k) :=
\bigl\{ 
\lambda \in Nd

0

\bigm| \bigm| \| log(\lambda + 1)\| 1 \leq log(k + 1)
\bigr\} 
,(4.2a)

where log(\lambda ) and \lambda + 1 are elementwise operations. Some important specializations
of the \ell p-balls are the total degree (TD), tensor product (TP), and Euclidean degree
(ED) spaces,

\Lambda TD(k) := \Lambda 1(k), \Lambda TP(k) := \Lambda \infty (k), \Lambda ED(k) := \Lambda 2(k).(4.2b)

In one dimension, all of these spaces are the same: the space of degree-k polynomials.
In the multivariate setting, they are different and each has its own uses, advantages,
and shortcomings. Fix d \geq 1; for large ``degree"" k \geq 1, we have the following ordering
for the dimension N = | \Lambda | of these spaces, along with their asymptotics:

| \Lambda HC(k)| < | \Lambda TD(k)| < | \Lambda ED(k)| < | \Lambda TP(k)| ,

\sim \sim \sim =

(k + 1) log(k + 1)d - 1 < (k+1)d

\Gamma (d+1) < 1

\Gamma ( d
2+1)

\Bigl[ \surd 
\pi 
2 (k + 1)

\Bigr] d
< (k + 1)d.

We show geometric depictions of k = 20 multi-index sets in d = 2 dimensions in
Figure 2. For example, we observe that \Lambda TD(k) \subset \Lambda TP(k) or, in other words, that
V (\Lambda TP(k)) is a larger approximation space than V (\Lambda TD(k)) and hence has a greater
approximation power. However, the dimension of V (\Lambda TP(k)) is much larger than
V (\Lambda TD(k)), so that more data (function evaluations) would be required to construct
approximations.

This communicates the possible disadvantage of these spaces: in large dimensions
polynomial subspaces V with strong approximation power may have a very large linear
dimension N = dimV , and would hence require a large amount of data to compute
best L2

w approximations. One must therefore balance the need for approximation
accuracy against the need for computational feasibility. In practice, there are reasons
to use each of these spaces; see, e.g., [54] for a motivation of Euclidean degree approx-
imation. In this paper we are chiefly concerned with building approximations from
any one of these spaces: given V (\Lambda ), how can we constructively compute a near-best
approximation gN to a function f?

5. Best Approximations and Least Squares. With the notation introduced in
the previous section, much of our univariate notation in section 3 can be directly
applied. Let \Lambda be a given finite multi-index set in Nd

0, and define V (\Lambda ) via (4.1);
then with N = | \Lambda | , dimV = N . Therefore, we can identify N L2

w-orthonormal basis
functions v1, . . . , vN satisfying (2.1). Given an L2

w function f , we define fN \in V as
the best L2

w approximation to f from an element of V , just as in (2.3). As before, an
essentially explicit way to compute fN is furnished (2.2).

Just as in the one-dimensional case, the integrals in (2.2) usually cannot be ex-
plicitly computed and must be approximated. In contrast to the univariate case,
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λ(1)

λ
(2
)

ΛHC(20)

λ(1)

λ
(2
)

ΛTD(20)

λ(1)

λ
(2
)

ΛED(20)

λ(1)

λ
(2
)

ΛTP(20)

Fig. 2 Visual depiction of two-dimensional multi-index sets. Left-to-right: The hyperbolic cross
(HC), total degree (TD), Euclidean degree (ED), and tensor product (TP) spaces of or-
der/degree k = 20. Each multi-index set \Lambda uniquely identifies a polynomial space V (\Lambda ) via
the relation (4.1).

performing discretizations in high-dimensional cases is quite difficult, for example,
because there is no simple analogue of a multivariate ``Gaussian"" quadrature rule and
many straightforward attempts at identifying highly accurate quadrature rules result
in computationally infeasible constructions. A tensor-product construction illustrates
the difficulty: if one forms a quadrature grid using m points per dimension, then in d
dimensions this results in M = md points. For moderate values of m and, say, d \gtrsim 5,
the resulting computational cost (i.e., the number of times f must be evaluated) is
too onerous for practical implementation.

The alternative popular strategy that we investigate in this paper is that of (ran-
domized) discrete least squares. One reason for the popularity of this approach is that
it is particularly simple to explain and implement. A discrete least-squares approx-
imation computes the minimizer gN of a discrete estimator of the norm \| f  - gN\| .
A randomized version of this strategy chooses the discrete estimator for the norm
by randomly sampling points in D. We will see that by intelligently specifying a
sampling distribution for the random draw of samples, we can compute near-optimal
approximations gN with acceptable computational effort.

Suppose that x1, . . . , xM are M sample points in D. We will build an approxi-
mation gN \in V to f by minimizing the discrete \ell 2 discrepancy between gN and f on
these points, i.e., we define gN via the optimization

gN := argmin
g\in V

1

M

M\sum 
m=1

(g(xm) - f(xm))
2
.(5.1)

In this formulation, the only information about f we require is the ensemble of data
\{ f(xm)\} Mm=1. The difference between gN defined in this way, and fN defined in (2.2),
is in the objective function under the argmin. With fN , the objective function is an
L2
w norm, i.e., an integral, whereas for gN it is a discretization of this integral. To

formulate the above as an algorithm, we rewrite it as a linear algebra problem. First
we note that gN \in V has the form (3.3) for some coefficients cn; we next prescribe
conditions that the vector \bfitc = (c1, . . . , cN )T satisfies. Define an M \times N matrix \bfitA and
a vector \bfitf \in RM with entries

(A)m,n =
1\surd 
M

vn(xm), (f)m =
1\surd 
M

f(xm).(5.2)

The vector \bfitc containing expansion coefficients for gN is defined in (5.1), which is
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492 LING GUO, AKIL NARAYAN, AND TAO ZHOU

equivalent to

\bfitc := argmin
\bfitd \in V

\| \bfitA \bfitd  - \bfitf \| 22 ,(5.3)

where \| \cdot \| 2 is the standard Euclidean norm on vectors. Thus, the vector \bfitc is the
least-squares solution to the overdetermined linear system

\bfitA \bfitc = \bfitf .(5.4)

We are interested in the overdetermined case when M \geq N and assume that \bfitA 
has full (column) rank and therefore the least-squares solution to (5.4) is unique. If
w(x) \geq \epsilon > 0 for x in any open ball in Rd, xm are sampled i.i.d. from w, M \geq N ,
and V is a space of polynomials, then \bfitA has full rank with probability 1.

The approximation gN is also defined by (5.4) through (3.3). For the purpose
of analysis, the least-squares solution to (5.4) is often written as the solution to the
corresponding set of normal equations. These equations can be derived, for example,
by computing the critical point of the quadratic objective function in (5.3). If \bfitA is
full rank, then the multivariate second derivative test reveals that the unique critical
point is a global minimizer. The normal equations are given by

\bfitG \bfitc = \bfitg , \bfitG := \bfitA T\bfitA \in RN\times N , \bfitg = \bfitA T\bfitf \in RN ,(5.5)

which define the vector \bfitc that minimizes the \ell 2 residual of (5.4). The system above
is a square system, and hence has a unique solution when \bfitG is full rank (i.e., when \bfitA 
has full column rank). When \bfitG is rank-deficient, infinitely many solutions exist and
any such solution achieves (5.3); this case is less practical when M \geq N and we do
not consider that situation in this paper. We remark that computationally one should
solve (5.4) in a least-squares sense via, e.g., a QR factorization, instead of solving the
normal equations system (5.5), since (5.4) is usually a much better conditioned linear
system.

5.1. Random Sampling and Asymptotics. While we have completed a basic
description of gN above, it is not clear how good an approximation this provides to
f . A first step in this direction can be provided by describing a particular strategy
for generating the grid xm and subsequently investigating asymptotics. Suppose that
x1, . . . , xM are i.i.d. random draws from a random variable X with probability density
w.2 We can now motivate the large-M construction of gN with two complementary
observations.

First, consider the right-hand side argument under the argmin of (5.1). With M
large, the law of large numbers implies that

1

M

M\sum 
m=1

(g(xm) - f(xm))
2 M\uparrow \infty  - \rightarrow 

\int 
D

(g(x) - f(x))2w(x)dx = \| g  - f\| 2L2
w
,

so that (5.1) in the large-M limit produces the element gN \in V that is L2
w-closest to

f . This closest element is precisely the best approximation fN in (2.3). This shows
that gN \rightarrow fN as M \uparrow \infty .

2It is more conventional to use uppercase letter notation for random variables, but we will
continue to use the lowercase version xm to denote a random variable draw.
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We can likewise explore the asymptotic behavior of the entries of \bfitG and \bfitf :

(G)m,n =
1

M

M\sum 
j=1

vm(xj)vn(xj)
M\uparrow \infty  - \rightarrow 

\int 
D

vm(x)vn(x)w(x)dx = \delta m,n,(5.6a)

(g)n =
1

M

M\sum 
j=1

f(xj)vn(xj)
M\uparrow \infty  - \rightarrow 

\int 
D

f(x)vn(x)w(x)dx = \widehat fn.(5.6b)

Thus, the condition (5.5) requires that cn equals the best approximation coefficients\widehat fn in the large-M limit. This result is consistent with our first observation that
gN \rightarrow fN for large M . We codify this convergence as follows.

Lemma 5.1. Let gN be the approximation in (3.3) where the expansion coefficients
cn are computed as the solution to (5.5) or (5.3). Then the following limit holds in
L2
w:

lim
M\rightarrow \infty 

gN = fN almost surely.

Proof. We will show that cn \rightarrow \widehat fn almost surely, which by (3.3) and (2.2) yields
the result. The strong law of large numbers establishes that the asymptotic relations
(5.6) hold with probability 1. Thus, \bfitG entrywise converges to \bfitI almost surely by (5.6)
as M \uparrow \infty . Since N is fixed and all finite-dimensional norms are equivalent, then we
have the M -asymptotic results

\bfitG  - 1 \rightarrow \bfitI almost surely, \bfitg \rightarrow \widehat \bfitf almost surely,(5.7)

by the continuous mapping theorem, where \widehat \bfitf = ( \widehat f1, . . . , \widehat fN )T . The limits above hold
in any norm on RN (vector limit) or RN\times N (matrix limit). Now we write the normal
equations (5.5) as

\bfitG \bfitc = \bfitg , =\Rightarrow \bfitc = \bfitG  - 1 \widehat \bfitf +\bfitG  - 1
\Bigl( 
\bfitg  - \widehat \bfitf \Bigr) .

We can now take M \uparrow \infty limits of the summands above and utilize (5.7):

lim
M\rightarrow \infty 

\bfitG  - 1 \widehat \bfitf = \bfitI \widehat \bfitf = \widehat \bfitf ,
lim

M\rightarrow \infty 
\bfitG  - 1

\Bigl( 
\bfitg  - \widehat \bfitf \Bigr) = \bfitI 0 = 0.

Both the above limits hold almost surely in any norm on RN . Therefore, we have
established that \bfitc \rightarrow \widehat \bfitf with probability 1.

The result above establishes that a discrete least-squares approximation gN built
from random sampling M -asymptotically achieves the best possible approximation.
However, this does not establish quantitative error in the preasymptotic regime. Re-
call our definition of \eta N in (3.4), and the fact that in the one-dimensional example
shown in Figure 1, we achieved \eta N \approx 1, indicating that the function gN is compara-
ble in L2

w-approximation quality to the best, usually uncomputable, approximation
fN . Since gN is uniquely identified by N coefficients (the cn), then one hopes for
an outcome similar to the one-dimensional case with Gaussian quadrature illustrated
in Figure 1: approximately M \sim N samples can allow us to compute a gN so that
\eta N \sim 1. It turns out that, in practice, we frequently cannot achieve this as above by
sampling xm i.i.d. from the density w.
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494 LING GUO, AKIL NARAYAN, AND TAO ZHOU

Example 5.2. Consider the Gaussian density case w(x) = exp( - \| x\| 2)/\pi for
x \in D = R

2. Given a positive integer k, we define \Lambda = \Lambda TD(k), which identifies
V = V (\Lambda ) through (4.1). Consider the test function f(x) defined as

f(x) = B(\| x/4 - (0.2, - 0.1)\| 2),

where B(x) is the univariate bump function in (3.5). We will test approximations of
this function from the space V for k = 1, . . . , 25. Note that N = dimV =

\bigl( 
k+2
k

\bigr) 
=

(k + 1)(k + 2)/2 in this case, so that N grows quadratically with k. We compute
least-squares approximations gN from function samples, where the samples xm are
taken as i.i.d. samples from the density w. We take M = 10N samples to construct
gN , which is quite a considerable oversampling. Figure 3 (left) shows the results of
this experiment: the least-squares estimator gN is extremely inaccurate, but the best
approximation fN should be a reasonable approximation. To study how gN behaves as
a function of the sample count M , we next fix k = 20, which also fixes N = 231, and
now test various sample size ranges from M = N to M = 10N . The results are shown
in Figure 3 (center) and illustrate that gN computed in this way converges extremely
slowly, i.e., \eta N is quite large even for M = 10N . We will return to this example in
section 7 after introducing a particular weighted least-squares procedure using samples
from the induced distribution. As shown in Figure 3 (right) this weighted least-squares
procedure substantially improves stability and accuracy of the approximation gN .

For completeness, the rightmost pane of Figure 3 illustrates the more positive
result of performing discrete least squares using a particular biased sampling technique
that is the main focus of this paper and serves to ameliorate the bad behavior observed
in the left and center panes. The details of this sampling technique are explained in
what follows.

5.2. Biased Sampling. In the previous section we formed a least-squares ap-
proximation gN by taking x1, . . . , xM defining the normal equations (5.5) to be i.i.d.
samples from a random variable with density w. In this section, we will generalize
this idea to the case of biased sampling in a weighted least-squares formulation. To
be precise, let q(x) denote any positive L2

w function with unit L2
w norm, i.e., \| q\| = 1;

this choice implies that\int 
D

\rho (x)dx = 1, \rho (x) := q2(x)w(x),(5.8)

so that \rho (x) is another probability density over D. Note that q(x) \equiv 1 is one such
choice, since w is itself a probability density function. We will consider forming a
1/q2-weighted least-squares approximation by taking samples from a random variable
with density \rho = q2w.

Let x1, . . . , xM denote i.i.d. samples drawn from a random variable whose density
is \rho . We now generalize the definition of the matrices \bfitA and the vector \bfitf introduced
in (5.2) by building in dependence on q:

(A)m,n =
1\sqrt{} 

Mq2(xm)
vn(xm), (f)m =

1\sqrt{} 
Mq2(xm)

f(xm).(5.9)

We emphasize that if q(x) \equiv 1, then the definitions above revert to those in (5.2).
Note that we have now weighted each sample, so that the least-squares solution to
the overdetermined system

\bfitA \bfitc = \bfitf 
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Fig. 3 Companion results for Example 5.2. Left: Comparison between the best approximation error
\| f  - fN\| and a ``standard"" discrete least-squares approximation error \| f  - gN\| , where the
samples are drawn i.i.d. from w. We use M = 10N samples to generate gN . Since the
procedure for constructing gN is random, 100 trials are performed for each value of N , and
the results from the collection of trials are presented as a scatter plot. The vertical black
dotted line indicates the value of N used in the center and right plots. Center: Fixing a
degree k = 20 approximation (N = 231) shows values of the relative error metric \eta N defined
in (3.4) for the ``standard"" discrete least-squares approximation as a function of the number
of samples M used in the construction. The large values of \eta N show that this method of
construction produces poor approximations. Right: For the same setup as the center pane,
this shows construction of an approximation gN using induced distribution sampling, which
is the main topic of this paper, where samples are drawn i.i.d. from \rho introduced in section 7.
This latter approach yields values \eta N \sim 1 with moderate dependence of M on N , motivating
its use in practice.

is a weighted least-squares formulation, i.e., we are solving (5.3) with our new defini-
tions of \bfitA and \bfitf and forming the approximation gN via the optimization

gN := argmin
g\in V

1

M

M\sum 
m=1

(g(xm) - f(xm))
2

q(xm)2
.

The resulting coefficient vector \bfitc depends on the choice of q, i.e., depends on the
choice of our weighting. Note that, with our new definitions of \bfitA and \bfitf , the normal
equations are formulated precisely as in (5.5).

At face value, it does not seem that we have accomplished anything. Indeed, since
we have sampled from the density \rho = q2w and weighted by 1/q2, then in the large-M
limit, this change of variable results in asymptotic properties that are independent of
q:

1

M

M\sum 
m=1

(g(xm) - f(xm))
2

q(xm)2
M\uparrow \infty  - \rightarrow 

\int 
D

(g(x) - f(x))2

q2(x)
q2(x)w(x)dx = \| g  - f\| 2L2

w
.

In addition, we have results analogous to (5.6):

(G)m,n =
1

M

M\sum 
j=1

vm(xj)vn(xj)

q2(xj)

M\uparrow \infty  - \rightarrow 
\int 
D

vm(x)vn(x)

q2(x)
q2(x)w(x)dx = \delta m,n,

(g)n =
1

M

M\sum 
j=1

f(xj)vn(xj)

q2(xj)

M\uparrow \infty  - \rightarrow 
\int 
D

f(x)
vn(x)

q2(x)
q2(x)w(x)dx = \widehat fn.

Indeed, all we have done is change our discrete estimation of the integrals on the right-
hand side by changing the sampling distribution. Such an idea is hardly new and is
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496 LING GUO, AKIL NARAYAN, AND TAO ZHOU

the basis for biased or importance sampling strategies. Just as in those contexts, we
can choose q to mitigate the instabilities observed when constructing gN in Figure 3.
The fundamental analysis that demonstrates the optimal choice of q centers around
the normal equations.

Due to the M -asymptotic limits above, the M -asymptotic behavior of gN is just
as in Lemma 5.1: we have gN \rightarrow fN with probability 1 as M \rightarrow \infty . However, a more
interesting topic is what happens in the preasymptotic regime.

6. Preasymptotic Analysis of the Normal Equations. A qualitative under-
standing of when the approximation gN is close to the best approximation fN can be
given by inspection of the normal equations defined in (5.5) (where again the matrices
\bfitA and \bfitf are defined in (5.9) with an as yet unspecified function q). We reiterate that
we have

\bfitG 
M\uparrow \infty  - \rightarrow \bfitI , \bfitg 

M\uparrow \infty  - \rightarrow 
\Bigl( \widehat f1, . . . , \widehat fN\Bigr) T

,

where \bfitI is the N \times N identity matrix. Thus, when \bfitG is ``close"" to \bfitI and \bfitg has entries
``close"" to \widehat fn, the gN will be ``close"" to fN (cf. the proof of Lemma 5.1). In this
section we will concentrate on providing analysis that quantifies the proximity of \bfitG 
to \bfitI , indicating that the linear system of normal equations (5.5) is well-conditioned
and that the least-squares problem is therefore stable. A full, rigorous analysis that
uses this to quantify the proximity of gN to f is too technical for this paper, but is
not needed to communicate the main ideas about how one can choose q to prevent
instabilities in least-squares computations.

We present the main result we need, which is a specialization of Theorem 1 in
[14], followed by a brief proof.

Theorem 6.1 ([14]). Define \bfitG as in (5.5) with \bfitA defined in (5.9). If, for some
r > 0, the number of samples M satisfies

M

logM
\geq C(r + 1) sup

x\in D

N\sum 
n=1

\biggl( 
vn(x)

q(x)

\biggr) 2

,(6.1)

where C = 2/ log(27/8e) \approx 9.24, then with probability at least 1 - 2M - r we have

\| \bfitG  - \bfitI \| 2 \leq 1

2
,

where \| \cdot \| 2 is the induced \ell 2 norm on matrices.

Proof. The entries of \bfitG defined by (5.5) have the expression

(G)j,k =
M\sum 

m=1

1

Mq2(xm)
vj(xm)vk(xm), 1 \leq j, k \leq N,

and hence we have the matrix equality

\bfitG =
M\sum 

m=1

\bfitV m, (Vm)j,k =
1

Mq2(xm)
vj(xm)vk(xm), 1 \leq j, k \leq N.

Since \bfitV m depends only on xm, and since xm are drawn as i.i.d. samples (from the
density \rho = q2w), then \bfitV m are i.i.d. matrices, and in particular are clearly symmetric.
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Furthermore, each \bfitV m is a nonnegative matrix, here meaning all eigenvalues are
nonnegative. This is easily verified from the above expression by noting that \bfitV m is
the rank-one matrix

\bfitV m = \bfitv m\bfitv T
m, \bfitv T

m =
1\surd 

Mq(xm)
(v1(xm), . . . , vN (xm))

T
.

Thus, we have shown explicitly that \bfitV m has one eigenvalue equal to \| \bfitv m\| 2 \geq 
0 and that its remaining eigenvalues are 0; thus, \bfitV m is symmetric and positive
(semi)definite.

One final piece we require is the simple computation

E(Vm)j,k =

\int 
D

1

M

vj(x)vk(x)

q2(x)
q2(x)w(x)dx =

1

M
\delta j,k,

where the expectation is taken over the density \rho = q2w, corresponding to the random
draw of xm. This in turn implies that E\bfitG =

\sum M
m=1E\bfitV m = \bfitI .

In order to understand how far \bfitG deviates from its expectation, the identity
matrix, we employ a matrix Chernoff bound for sums of i.i.d. positive semidefinite
matrices [56]. Let \lambda min(\bfitM ) and \lambda max(\bfitM ) denote the minimum and maximum eigen-
values, respectively, of a symmetric matrix \bfitM . The Chernoff bound we use will
specify how far the spectrum of \bfitG deviates from the spectrum of its expectation E\bfitG .
To this end, let

\tau min := \lambda min (E\bfitG ) = 1, \tau max := \lambda max (E\bfitG ) = 1.

Finally, let Q denote a bound on the spectral norm of the summand \bfitV m:

\lambda max(\bfitV m) = \| \bfitV m\| 2 = \| \bfitv m\| 2 =
1

M

N\sum 
n=1

\biggl( 
vn(xm)

q(xm)

\biggr) 2

\leq 1

M
sup
x\in D

N\sum 
n=1

\biggl( 
vn(x)

q(x)

\biggr) 2

=: Q.

(6.2)

We will be interested in the following events:

Emin :=

\biggl\{ 
\lambda min (\bfitG ) \leq 1

2
\tau min

\biggr\} 
, Emax :=

\biggl\{ 
\lambda max (\bfitG ) \geq 3

2
\tau max

\biggr\} 
,

E := Emin

\bigcup 
Emax =

\biggl\{ 
\| \bfitG  - \bfitI \| 2 >

1

2

\biggr\} 
.

In particular, E is an event corresponding to a relatively ill-conditioned set of normal
equations, so that we hope to minimize the probability of E. The matrix Chernoff
bound we employ, discussed in [56], gives bounds on the probability that the spectrum
of \bfitG deviates substantially from that of E\bfitG :

Pr [Emin] \leq N

\biggl( 
2

e

\biggr) \tau min/2Q

, Pr [Emax] \leq N

\biggl( 
8e

27

\biggr) \tau max/2Q

.

The expression simplifies a bit by noting that \tau min = \tau max = 1. We can now use the
union bound

Pr
\Bigl[ 
Emin

\bigcup 
Emax

\Bigr] 
\leq Pr [Emin] + Pr [Emax] ,
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and use the fact that 2/e < 8e/27 to conclude that

Pr [E] \leq 2N

\biggl( 
8e

27

\biggr) 1/2Q

= 2N exp

\biggl( 
 - 1

2Q
log(27/8e)

\biggr) 
.

Therefore, if we choose a number of samples M such that

log(27/8e)

2Q
\geq (r + 1) logM,(6.3)

then this guarantees

Pr [E] \leq 2N exp ( - (r + 1) logM) = 2NM - rM - 1 \leq 2M - r.

The condition (6.3) is equivalent to (6.1), proving the result.

7. Optimal Sampling and Least Squares. The result of Theorem 6.1 allows us
to devise a sampling strategy that yields stable discrete least-squares problems in
high dimensions. The main strength of this theorem is (6.1), specifying how large M
should be to ensure stability with high probability. The only portion of the condition
(6.1) that depends on the density w, the domain D, or the dimension d is the quantity

sup
x\in D

N\sum 
n=1

\biggl( 
vn(x)

q(x)

\biggr) 2

.

Therefore, we seek to choose q so that this quantity is minimized. We note that in
general the above expression can be no smaller than N :

sup
x\in D

N\sum 
n=1

\biggl( 
vn(x)

q(x)

\biggr) 2

\geq 
\int 
D

N\sum 
n=1

\biggl( 
vn(x)

q(x)

\biggr) 2

\rho (x)dx =

N\sum 
n=1

\int 
D

v2n(x)w(x)dx = N,

where the inequality uses the fact that \rho (x) = q2(x)w(x) is a probability density on D,
and the last equality is true since \{ vn\} Nn=1 is an L2

w-orthonormal basis. The authors
in [16] observe that one can actually achieve this lower bound exactly by choosing
q2(x) as

q2(x) =
1

N

N\sum 
n=1

v2n(x) =\Rightarrow sup
x\in D

N\sum 
n=1

\biggl( 
vn(x)

q(x)

\biggr) 2

= N.(7.1)

This in turn implies that if xm are i.i.d. samples from the density \rho = q2w, where q is
defined as in (7.1), then the sampling criterion (6.1) that ensures a stable least-squares
formulation with high probability is

M

logM
\geq C(r + 1)N, C =

2

log(27/8e)
,(7.2)

which, apart from logarithmic factors, is optimal in terms of the dependence of M
on N . Note that in practical scenarios the user-defined approximation space V will
depend on the dimension d (cf. the discussion in section 4 showing that many standard
polynomial approximation spaces V have dimension that depends on d). However, the
least-squares stability criterion (7.2) depends only on dimV = N and is independent
of the dimension d, the domain D, the density w, and even the particular choice of
N -dimensional subspace V . The tradeoff is that we must sample from the rather
nonstandard density \rho , which does depend on (V,w,D).
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Definition 7.1. Let D, w, and V be given so that V \subset L2
w(D). The (V,w,D)-

induced distribution corresponds to the following probability density on D:

\rho (x) =
1

N

N\sum 
n=1

v2n(x)w(x),(7.3)

where \{ vn\} Nn=1 is any L2
w-orthonormal basis for V .

The terminology induced is borrowed from similar terminology in orthogonal poly-
nomials [23]. Comparing (7.3) with (5.8), we see that the definition above corresponds
to the choice

q2(x) =
1

N

N\sum 
n=1

v2n(x).

At first glance the density \rho in (7.3) appears to depend on the choice of orthonor-
mal basis element vn. However, any unitary transformation of \{ vn\} Nn=1 leaves the
quadratic form

\sum 
n v

2
n unchanged, so that in reality the function defined in (7.3) is a

property of the subspace V and not of the chosen basis.
Our remedy for the unstable observations in Figure 3 is thus as follows: sample xm

i.i.d. from the induced density \rho and perform a weighted least-squares approximation,
where the weights are the explicit quantities 1/q(xm)2 = w(xm)/\rho (xm). If we perform
this type of biased sampling and weighted least-squares procedure, we obtain the
results shown in the rightmost pane of Figure 3, illustrating that we have substantially
ameliorated the instability.

7.1. Convergence. Until now we have only established a preasymptotic char-
acterization of \bfitG  - \bfitI , but have not discussed how this can be translated into gN
converging to fN . A full discussion and proof are outside the scope of this paper, but
we provide the following result from [16] that establishes one such convergence result.

To proceed we need to introduce an additional assumption, namely, that f is
bounded:

sup
x\in D

| f(x)| = L < \infty .(7.4)

Furthermore, we will need a truncation operator TL, defined as

TL(y) := sign(y)min\{ | y| , L\} .

In particular, we can use this to define TL \circ gN , which is an L-truncated version of
gN and is the focus of the following result.

Theorem 7.2 ([16]). Let (V,w,D) be given and fixed, and assume f \in L2
w sat-

isfies (7.4). Assume xm, m = 1, . . . ,M , are i.i.d. samples from the induced density
\rho = wq2 in (7.3), and assume that for some r > 0 the number of samples M satisfies
(6.1). Let gN be constructed with a weighted least-squares approach in which the coef-
ficients \bfitc are given by the solution to (5.5), where \bfitA is defined in (5.9). Noting that
gN is a random function, we have

E \| f  - TL \circ gN\| 2 \leq 
\biggl( 
1 +

4

C(1 + r) logM

\biggr) 
\| f  - fN\| 2 + 8L2M - r,

where C is the constant in (6.1).
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We refer the reader to [16] for the proof, and note that it hinges on first showing
the proximity of \bfitG to \bfitI , which we established earlier. The result above establishes
that, in expectation, a truncated version of the least-squares approximation gN com-
mits an error comparable to the best possible error committed by fN . One can also
prove statements in high probability about the nontruncated approximation gN .

8. Asymptotic Optimal Sampling. We have seen that a sampling i.i.d. from
the nonstandard induced density \rho given by (7.3) can substantially improve least-
squares approximations compared to to sampling i.i.d. from the original density w. A
natural desire is to seek to understand the density \rho , and in the context of polynomial
approximation a first step to accomplishing this is studying how \rho behaves as the
polynomial degree tends to infinity.

The large-degree limit of induced distributions is known in the one-dimensional
case. With V the space of polynomials of degree N  - 1 and lower, behavior of \rho as
N \uparrow \infty is known in some generality through potential theory. For example, with w(x)
uniform on [ - 1, 1], the large-N limit of \rho is

lim
N\rightarrow \infty 

\rho (x) = \rho \infty (x) :=
1

\pi 
\surd 
1 - x2

,

where the limit is true in the weak sense. This shows that sampling according to the
``Chebyshev"" density is the large-N optimal strategy [45]; such a result is consistent
with the classical numerical analysis knowledge that polynomial approximation on
bounded intervals with point evaluations is best accomplished with a Chebyshev-
distributed grid instead of a uniform grid. Similar results about \rho \infty are known for a
variety of univariate densities w. These limiting densities are summarized in [44] with
the references therein being the appropriate historical and seminal sources. Figure
4 compares the ``standard"" density w, the induced density \rho , and the N -asymptotic
induced density \rho \infty for three different choices of univariate w and with V the space
of polynomials up to degree N  - 1 = 19. One can observe that while \rho and \rho \infty are
visually close, w and \rho can be substantially different. In particular, \rho can dictate
substantial sampling in regions of D where w would require very few samples.

For the multivariate case, much more is unknown, and in many cases we currently
have only conjectures about such limiting densities. A similar experiment in the
multivariate case is complicated by the fact that many polynomial spaces V can be
defined associated to a particular ``degree"" k, since there are different ways of defining
degree-k multi-index sets \Lambda . For example, with \Lambda TD, \Lambda ED, \Lambda TP, and \Lambda HC as defined
in (4.2), we have enumerated four different ways to choose a space of ``degree"" k,
resulting in four different choices of a ``degree k"" induced distribution for degree k:

V (\Lambda TP(k)) \rightarrow \rho TP, V (\Lambda ED(k)) \rightarrow \rho ED, V (\Lambda TD(k)) \rightarrow \rho TD, V (\Lambda HC(k)) \rightarrow \rho HC.

Large-k asymptotics for these cases is largely understudied, but the total degree case
has received some attention with some existing conjectures for total degree asymp-
totics [45]. Consider D = [ - 1, 1]d with w uniform on D, and let V = V (\Lambda TD(k)).
Then the large-k asymptotic density is known as the tensorized Chebyshev density,
i.e.,

lim
N\rightarrow \infty 

\rho (x) =
1

\pi d
\prod d

j=1

\sqrt{} 
1 - 

\bigl( 
x(j)

\bigr) 2 .D
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Fig. 4 Plots of induced distribution probability density functions \rho associated to various densities
w for N = 20, where V is the space of polynomials of degree N  - 1 and lower. Also shown
are the N-asymptotic limits \rho \infty . Left: w(x) uniform on [ - 1, 1]2. Middle: w exponential on
the positive real line. Right: w Gaussian on the real line.

Notice that sampling with the Chebyshev density is straightforward. On the other
hand, consider D = Rd with w the Gaussian density as in Example 5.2. The authors
in [45] conjecture that the asymptotic density is of the form

lim
k\rightarrow \infty 

\rho (x/
\surd 
k) = C

\bigl[ 
2 - \| x\| 22

\bigr] d/2
,(8.1)

where C is a normalizing constant so that the limit is a probability density. Notice
that under the limit we require the input to \rho to be scaled by 1/

\surd 
k. Efficient sampling

schemes with the above density can be found in [45]. These examples demonstrate that
k-asymptotic sampling strategies can be characterized, but that they are sometimes
not obvious.

The characterization of k-asymptotic univariate induced densities hinges on the
notion of equilibrium measures from weighted potential theory [49]. A similar notion
of equilibrium measures in the multivariate case can be formulated through weighted
pluripotential theory [35, 5]. The authors in [45] use this connection to formulate the
asymptotic results above and to propose a least-squares sampling strategy based on
equilibrium measures. While the strategy is only k-asymptotically optimal, it utilizes
sampling from only standard distributions for a very wide variety of densities w. This
may be advantageous in applications, such as in adaptive approximation schemes
where the polynomial space is adaptively constructed. Another application is in the
so-called data-driven approach, where w is unknown except for perhaps its support,
and moments are approximated from an available database of samples from w [48, 24].

8.1. Sampling Scheme for the Induced Distribution. A final point that merits
discussion in this section is the task of sampling from \rho in (7.3). While sampling from
general multivariate probability densities is computationally onerous, the formula
(7.3) is an additive mixture of tensor-product densities, and so can easily be sampled
with linear complexity in the dimension d. More discussion on this topic is provided
in [16, 42], with software implementing this sampling provided in [41].

Some induced densities are compared in two dimensions in Figure 5 for w a
Gaussian density on R2 for k = 8. Again we see that w differs substantially from
each induced distribution, but in addition we see that, e.g., the Euclidean degree and
hyperbolic cross induced distributions also differ substantially.
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Fig. 5 Contour plots of induced distribution probability density functions \rho associated to the density
w(x) = exp( - \| x\| 22)/\pi for x \in R2, with V a space of degree k = 8. We show results for
the induced densities associated to total degree (TD), Euclidean degree (ED), tensor product
(TP), and hyperbolic cross (HC) spaces. Also shown is a conjectured density \rho \infty for the
large-k total-degree limiting density.

Example 8.1. We consider approximations in the space L2
w with w = exp( - \| x\| 22)/

\pi d/2 for x \in Rd. Our test function will itself be a Gaussian bump,

f(x) =
d\prod 

j=1

exp

\biggl( \Bigl[ 
x(j)

\Bigr] 2
/j

\biggr) 
, x =

\Bigl( 
x(1), x(2), . . . , x(d)

\Bigr) 
.

We have intentionally chosen a test function f that is of product form so that we
can easily compute best approximations fN in high dimensions. We will test approx-
imations from the space V (\Lambda ) with \Lambda = \Lambda HC(k). We investigate three different pairs
(d, k):

(d, k) = (4, 20), (8, 10), (20, 5).

For each test, we compute the relative error metrics \eta N defined in (3.4) using a
least-squares approximation gN built (a) from ``standard"" i.i.d. samples from w using
unweighted least squares, and (b) from induced distribution samples from \rho using
weighted least squares. The results are shown in Figure 6, illustrating that induced
distribution sampling outperforms standard sampling consistently, but the advantage
diminishes for large dimension. The reason for this diminishing advantage is that the
space V (\Lambda ) for smaller values of k (i.e., larger values of d) has low-degree polynomials,
and in this case the induced distribution density \rho defined in (7.3) is close to w.
Nevertheless, one observes that the qualitative accuracy behavior of gN using weighted
least squares with the induced distribution is essentially unchanged as the dimension
d increases, which is the expected behavior given Theorems 6.1 and 7.2.
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Fig. 6 Figure associated to Example 8.1. Relative errors \eta N when the least-squares approximation
gN is built using samples from w (blue dots) versus from the induced distribution \rho (red dots).
Since the procedure is randomized, 100 trials are performed for each value of M , and the
results are presented as a scatter plot. The approximation space V corresponds to \Lambda HC(k),
and w is the Gaussian density on Rd. Left: (d, k) = (4, 20). Middle: (d, k) = (8, 10). Right:
(d, k) = (20, 5).

Remark 8.2. We close this section by remarking that throughout this paper we
have only considered random sampling schemes. However, quasi-random or determin-
istic sampling schemes are also interesting and useful [61, 39, 25].

9. Example. We now present a thermal diffusion problem to show the applica-
tions of the least-squares approaches in parametric uncertainty quantification. The
problem is defined in the unit square following [2]:

(9.1)

\Biggl\{ 
 - \nabla \cdot (a(y, x)\nabla u(y, x)) = S(y, x) for(y, x) \in \Omega \times D,

u(y, x) = 0 for(y, x) \in \partial \Omega \times D.

The domain \Omega is a two-dimensional square domain depicted in Figure 7, left. The
conductivity coefficient a depends on a finite number of random variables (parameters)
x \in D. We consider a test case with forcing term S(y, x) = 100\chi F (y), where \chi F (y)
is the indicator function of the domain F \subset \Omega , a square subdomain with side length
equal to 0.2 centered in the domain as shown in Figure 7. The material features four
circular inclusions with radius r = 0.13 and symmetrically distributed with respect
to the center of the square, each with a different conductivity value, i.e., we take the
conductivity coefficient as a(y, x) = 1 +

\sum 4
i=1 x

(i)\chi i(y), where \chi i(y) is the indicator
function for each circle shown in Figure 7. Thus, x \in D \subset R

4. The quantity of
interest that we approximate is defined as

f(x) := u (y, x) , y = (0.25, 0.375) \in \Omega .

We interpret the parameters x(i) as i.i.d. random variables, each having a uniform
distribution, x(i) \sim U( - 0.99, 0.2). We are therefore interested in constructing an
approximation to the map x \mapsto \rightarrow f(x) in the L2

w norm, where w is the joint probability
density function of x.

Since w is uniform on a hypercube, the associated polynomial basis functions are
tensorized Legendre polynomials. For the spatial (y) discretization, we use the finite
element method with P1 elements. The procedure for evaluating f(x) then proceeds
as x \mapsto \rightarrow u(y, x) \mapsto \rightarrow u((0.25, 0.375), x). Hence, each evaluation of f requires a solution
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Fig. 7 Figure associated to PDE example (9.1). Left: Geometry for test case. Middle and right:
Discrete \ell 2 error against sampling number obtained from uniform sampling and weighted
least-squares sampling from the induced distribution, respectively. 100 trials are performed
for each value of M . The approximation space V corresponds to \Lambda HC(k) with (d, k) = (4, 25).

to a computationally involved finite element problem, motivating the need to design
algorithms that evaluate f as few times as possible.

To evaluate error in the procedure, we collect Q = 10,000 samples \{ f(zj)\} Qj=1 to
define the following discrete \ell 2 error:

\| f  - gN\| \approx 

\left(  1

M

M\sum 
j=1

(gN (xj) - f(xj))
2

\right)  1/2

.

Here gN (xj) represents the least-squares solution computed via either uniform density
sampling or the induced distribution sampling. The approximation space V is chosen
as V = V (\Lambda HC (25)). The numerical results are shown in the center and right plots
of Figure 7.

We observe that while weighted least-squares sampling from the induced distri-
bution produces results that are perhaps a bit better than the standard sampling
results, the difference is not substantial. This observation mirrors the lesson in Ex-
ample 8.1 that in some cases standard sampling from w is competitive with induced
distribution sampling from \rho , but the induced distribution sampling is consistently
among the best, and is backed by theory such as Theorems 6.1 and 7.2 requiring a
minimal sample count.

10. Conclusion. The construction of least-squares polynomial approximations
to functions in multiple dimensions is a useful computational approximation strategy.
When approximating functions of high-dimensional inputs x, the technique of ran-
domly choosing sample points is preferred to a grid formed from a computationally
infeasible tessellation of high-dimensional space. When approximating functions in an
L2
w sense, it makes sense to generate random samples from the density w. However, a

better strategy is to sample from a biased density (weighting accordingly to account
for the bias).

We have shown how random matrix concentration arguments can be used to de-
rive a sample count condition that guarantees stability of the discrete least-squares
problem. This condition gives rise to an optimal sampling density, the induced dis-
tribution, and sampling data from this density requires only log-linear dependence
of the number of samples M on the dimension of the approximation space N ; see
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(7.2). In particular, we have demonstrated that sampling from w can often be signif-
icantly suboptimal in practice, resulting in ill-behaved least-squares approximations,
but that a weighted least-squares approximation using the induced distribution pro-
vides dimension-independent behavior of least-squares stability and accuracy.

11. Extensions and New Directions. In the context of the literature, our inves-
tigations have been relatively limited: we have considered computing least-squares
approximations on a discrete grid that is generated by i.i.d. samples. There are
numerous alternatives and extensions that have been investigated in computing ap-
proximations in high dimensions:

\bullet We have investigated the so-called noiseless case, assuming that the data
vectors \bfitf and/or \bfitg are exact function evaluations. One can successfully show
that the least-squares procedure is stable with respect to noisy data [14, 16].

\bullet Much of our discussion has centered around polynomial approximations, but
all results outside of section 8 can be applied to general spaces of functions
in L2

w, not just polynomials.
\bullet One could consider interpolative reconstructions with a variety of meshes and
polynomial spaces [7, 6, 46, 47], but analysis of convergence in this case is
much more difficult.

\bullet When the number of samples M is very large, the requisite numerical linear
algebra in this paper may be computationally infeasible. In this case one
can investigate randomized linear algebra algorithms to compute solutions to
least-squares problems [52, 50].

\bullet Knowledge of the appropriate approximation space V is required to perform
least squares as described in this paper. However, a more promising approach
is to learn the appropriate subspace V from given data. Much work has been
devoted to such adaptive approximation techniques [38, 17, 12].

\bullet One may use quasi-Monte Carlo low-discrepancy point sets [37, 18], which
have been investigated in [39].

\bullet Alternative discrete or quasi-discrete point sets can produce good least-squares
approximations. These sets are sometimes generated deterministically [10, 61]
or through an optimization process [25, 51, 29].

\bullet Large parametric dimensions d often yield high approximation space dimen-
sions N , and thus require a large amount of data. When data is scarce,
M \ll N , one can seek approximations whose expansion coefficients are sparse
or compressible. The techniques to compute such approximations hinge on
theory from compressed sensing [19, 59, 30, 33, 13, 27, 58, 26].

\bullet In practice, the underlying density w may be unknown so that one must resort
to data-driven approaches in which moments of w must be approximated with
data [48, 24].

\bullet On the applications side, least-squares procedures for polynomial approx-
imation have great utility in parametric uncertainty quantification, which
seeks to understand solutions to parametric partial differential equations
[15, 1, 40, 11].

There are also several possible directions for new research that one can explore:
\bullet We have discussed randomized least-squares procedures, which allow bad be-
havior with low probability. However, optimal deterministic constructions
would not suffer from the ``in high probability"" caveat. We have mentioned
some deterministic strategies in the previous list, but there does not yet exist
consensus on the ``best"" deterministic strategy for high-dimensional approx-
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imation. In addition, many existing approaches construct an approximation
grid via numerical optimization, which can be very expensive.

\bullet A full understanding of the asymptotics of induced distributions is elusive. A
concrete open problem is to establish the conjecture (8.1), but a more general
goal is a comprehensive understanding of the large-degree asymptotics of such
sampling densities. Possible avenues of exploration include recent results from
pluripotential theory [8].

\bullet Adaptive construction of polynomial (or nonpolynomial) approximation spaces
is an ongoing area of research. While existing approaches are effective, they
still succumb to the curse of dimensionality, and some practical issues in
adaptivity are being investigated.
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